Шкалы измерения

Автор статьи: Клевцова Анна Александровна
При копировании или цитировании ссылка на сайт и автора обязательна.


Любое эмпирическое научное исследование начинается с того, что исследователь фиксирует выраженность интересующего его свойства (или свойств) у объекта или объектов исследования, как правило, при помощи чисел. Таки образом, следует различать объекты исследования (в социальных науках это чаще всего люди, испытуемые), их свойства (то, что интересует исследователя, составляет предмет изучения) и признаки, отражающие в числовой шкале выраженность свойств.

Измерение - это приписывание числовых форм объектам или собы­тиям в соответствии с определенными правилами (Стивенс С, 1960, с.60). Это правило устанавливает соответствие между измеряемым свойством объекта и результатом измерения признаком.

С математической точки зрения, измерением называется операция установления взаимно однозначного соответствия множества объектов и символов (как частный случай – чисел). Символы (числа) приписываются по определённым правилам.

В обыденном сознании, как правило, нет необходимости разделять свойства вещей и их признаки: такие свойства предметов, как вес и длина, мы отождествляем, соответственно, с количеством граммов и сантиметров. Если нет необходимости в измерении, мы ограничиваемся сравнительными суждениями: этот человек тревожный, а этот – нет, этот более сообразителен, чем другой, и т.д.

В научном исследовании нам исключительно важно отдавать себе отчёт в том, что точность, с которой признак отражает измеряемое свойство, зависит от процедуры (операции, правила) измерения.Правила, на основании которых числа приписываются объектам, определяют шкалу измерения.

Измерительная шкала – основное понятие, введенное в 1950 г. С.С.Стивенсом (Экспериментальная психология/Под.ред. С. С. Стивенса. М.,1963г.); его трактовка шкалы и сегодня используется в научной литературе.

Итак, приписывание чисел объектам создаёт шкалу. Создание шкалы возможно, поскольку существует изоморфизм формальных систем и систем действий, производимых над реальными объектами. Числовая система является множеством элементов с реализованными на нём отношениями и служит моделью для множества измеряемых объектов.

Различают несколько типов таких систем и соответственно несколько типов шкал. Операции, а именно – способы измерения объектов, задают тип шкалы. Шкала в свою очередь характеризуется видом преобразований, которые могут быть отнесены к результатам измерения. Если не соблюдать это правило, то структура шкалы нарушается, а данные измерения нельзя будет осмысленно интерпретировать.

Шкала (лат. scala- лестница) в буквальном значении есть измерительный инструмент.

П. Суппес и Дж. Зинес (Суппес П., Зинес Дж., 1967) дали классическое определение шкалы: «Пусть A — эмпирическая система с отношениями (ЭСО), R — полная числовая система с отношениями (ЧСО), f — функция, которая гомоморфно отображает А в подсистему R (если в области нет двух разных объектов с одинаковой мерой, что является отображением изоморфизма). Назовем шкалой упорядоченную тройку <А; R; f>». Обычно в качестве числовой системы R выбирается система действительных чисел или ее подсистема. Множество А — это совокупность измеряемых объектов с системой отношений, определенной на этом множестве. Отображение f — правило приписывания каждому объекту определенного числа.

В настоящее время определение Суппеса и Зинеса уточнено. Во-первых, в опре­деление шкалы вводится G — группа допустимых преобразований. Во-вторых, множество А понимается не только как числовая система, но и как любая формальная знаковая система, которая может быть поставлена в отношение гомоморфизма с эмпирической системой. Таким образом, шкала — это четверка <А; R; f; G>. Согласно современным представлениям, внутренней характеристикой шкалы выступает именно группа G, а f является лишь привязкой шкалы к конкретной ситуации измерения.

В современной науке под измерением понимается конструирование любой функции, которая изоморфно отображает эмпирическую структуру в символическую структуру. Как уже отмечено выше, совсем не обязательно такой структурой должна быть числовая. Это может быть любая структура, с помощью которой можно измерить характеристики объектов, заменив их другими, более удобными в обращении (в том числе числами).

Шкалы разделяют на метрические (если есть или может быть установлена единица измерения) и неметрические (если единицы измерения не могут быть установлены).

С.Стивенсом предложена классификация из 4 типов шкал измерения:

  1. номинативная, или номинальная, или шкала наименований;
  2. порядковая, или ранговая шкала;
  3. интервальная, или шкала равных интервалов;
  4. шкала равных отношений.

Номинативная шкала (неметрическая), или шкала наименований - это шкала, классифицирующая по названию (лат. nomen - имя, название). В её основе лежит процедура, обычно не ассоциируемая с измерением. Пользуясь определённым правилом, объекты группируются по различным классам так, чтобы внутри класса они были идентичны по измеряемому свойству. Затем каждому объекту присваивается соответствующее обозначение.

Простейший случай номинативной шкалы - дихотомическая шкала, состоящая всего лишь из двух ячеек, например: «имеет братьев и сестер - единственный ребенок в семье»; «иностранец – соотечественник»; проголосовал «за» - проголосовал «против» и т.п.

Признак, который измеряется по дихотомической шкале наименований, называется альтернативным. Он может принимать всего два значения. При этом исследователь зачастую заинтересован в одном из них, и тогда он говорит, что признак «проявился», если тот принял интересующее его значение, и что признак «не проявился» , если он принял противоположное значение. Например: «Признак леворукости проявился у 8 испытуемых из 20». В принципе номинативная шкала может состоять из ячеек «признак проявился - признак не проявился».

Более сложный вариант номинативной шкалы - классификация из трех и более ячеек, например: «экстрапунитивные - интрапунитивные - импунитивные реакции» или «выбор кандидатуры А - кандидатуры Б -кандидатуры В - кандидатуры Г» или «старший - средний - младший - единственный ребенок в семье» и др.

Расклассифицировав все объекты, реакции или всех испытуемых по ячейкам классификации, мы получаем возможность от наименований перейти к числам, подсчитав количество наблюдений в каждой из ячеек.

Как уже указывалось, наблюдение - это одна зарегистрированная реакция, один совершенный выбор, одно осуществленное действие или результат одного испытуемого.

Допустим, мы определим, что кандидатуру А выбрали 7 испы­туемых, кандидатуру Б - 11, кандидатуру В - 28, а кандидатуру Г – всего 1. Теперь мы можем оперировать этими числами, представляющими собой частоты встречаемости разных наименований, то есть частоты принятия признаком "выбор" каждого из 4 возможных значений. Далее мы можем сопоставить полученное распределение частот с равномерным или каким-то иным распределением.

Таким образом, номинативная шкала позволяет нам подсчитывать частоты встречаемости разных «наименований», или значений признака, и затем работать с этими частотами с помощью математических методов.

Единица измерения, которой мы при этом оперируем - количество наблюдений (испытуемых, реакций, выборов и т. п.), или частота. Точнее, единица измерения - это одно наблюдение.

Порядковая шкала (неметрическая), или ранговая шкала - это шкала, классифицирующая по принципу «больше – меньше». Как следует из названия, измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства. Если в шкале наименований было безразлично, в каком порядке мы расположим классификационные ячейки, то в порядковой шкале они образуют последовательность от ячейки «самое малое значение» к ячейке «самое большое значение» (или наоборот). Ячейки теперь уместнее называть классами, поскольку по отношению к классам употребимы определения «низкий», «средний» и «высокий» класс (ранг), или 1-й, 2-й, 3-й класс, и т.д.

В порядковой шкале должно быть не менее трех классов например «положительная реакция - нейтральная реакция - отрицательная реакция» или «подходит для занятия вакантной должности - подходит с оговорками - не подходит» и т. п.

В порядковой шкале мы не знаем истинного расстояния между классами а знаем лишь, что они образуют последовательность. Например, классы «подходит для занятия вакантной должности» и «подходит с оговорками» могут быть реально ближе друг к другу, чем класс «подходит с оговорками» к классу «не подходит».

От классов легко перейти к числам, если мы условимся считать, что низший класс получает ранг 1, средний класс - ранг 2, а высший класс - ранг 3, или наоборот. Чем больше классов в шкале, тем больше у нас возможностей для математической обработки полученных данных и проверки статистических гипотез.

Например, мы можем оценить различия между двумя выборками испытуемых по преобладанию у них более высоких или более низких рангов или подсчитать коэффициент ранговой корреляции между двумя переменными, измеренными в порядковой шкале, допустим, между оценками профессиональной компетентности руководителя, данными ему разными экспертами.

Итак, единица измерения в шкале порядка - расстояние в 1 класс или в 1 ранг, при этом расстояние между классами и рангами может быть разным (оно нам неизвестно).

При ранжировании «вручную», а не при помощи компьютера, следует иметь в виду два обстоятельства:

  1. Установите для себя и запомните порядок ранжирования. Вы можете ранжировать испытуемых по их «месту в группе»: ранг 1 присваивается тому, у которого наименьшая выраженность признака, и далее – увеличение ранга по мере увеличения признака. Или можно ранг 1 присваивать тому, у которого 1-е место по выраженности данного признака (например, «самый быстрый»). Строгих правил выбора здесь нет, но важно помнить, в каком направлении проводилось ранжирование.
  2. Соблюдайте правило ранжирования для связанных рангов, когда двое и более испытуемых имеют одинаковую выраженность измеряемого свойства. В этом случае таким испытуемым присваиваются один и тот же, средний ранг. Например, если вы ранжируете испытуемых по «месту в группе» и двое имеют одинаковые самые высокие исходные оценки, то обоим присваивается средний ранг 1,5: (1+2)/2 = 1,5. Следующему за этой парой испытуемому присваивается ранг 3, и т.д. Это правило основано на соглашении соблюдения одинаковой суммы рангов для связанных и несвязанных рангов. В соответствии с этим правилом сумма всех присвоенных рангов для группы численностью N должна равняться N(N+1)/2, вне зависимости от наличия или отсутствия связей в рангах.

Интервальная шкала (метрическая) - это шкала, классифицирующая по принципу «больше на определенное количество единиц - меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии. Шкала интервалов определяет величину различий между объектами в проявлении свойства. Она дополняет идею ранжирования принципом равных интервалов между ранжируемыми явлениями.

Наиболее распространенный пример использования интервальной шкалы — психологические тесты личности, установок и способностей. Например, результаты теста интеллекта обычно представляются подобным образом. Некто, имеющий IQ 120, предполагается более умным (предположим, что IQ определяет умственные способности), чем тот, чей IQ равен ПО. Более того — и в этом заключается отличительная

особенность интервальной шкалы — разница в интеллектуальных способностях двух людей с IQ 120 и 110 предполагается такой же, как разница между людьми с IQ 110 и 100. Другими словами, предполагается, что каждый шаг увеличения значения IQ отражает одинаковую степень увеличения интеллекта (интервалы равные). Обратите внимание на слово «предполагается»— некоторые психологи считают, что IQ (а также результаты большинства тестов личности) строятся по принципу шкалы отношений; они утверждают, что довольно трудно, если вообще возможно, в этом случае предполагать равные интервалы. Но большинство ученых считают, что IQ относится к интервальной шкале, хотя говорят так отчасти по прагматическим причинам: психологи любят использовать интервальную шкалу и шкалу отношений в основном потому, что структура данных этих шкал позволяет проводить более сложный статистический анализ.

Ещё одним типичным примером измерения в интервальной шкале является температура по шкале Цельсия (оС). Важная особенность такого измерения заключается в том, что нулевая точка на шкале не соответствует полному отсутствию измеряемого свойства (0 оС – это точка замерзания воды, но не отсутствия температуры, тепла). И если сегодня + 5 оС, а вчера было +10 оС, то можно сказать, что сегодня на 5 градусов холоднее, но неверно утверждать, что сегодня холоднее в два раза.

Принцип построения большинства интервальных шкал построен на известном правиле «трех сигм»: примерно 97,7-97,8% всех значений признака при нормальном его распределении укладываются в диапазоне М±3? Можно построить шкалу в единицах долей стандартного откло­нения, которая будет охватывать весь возможный диапазон изменения признака, если крайний слева и крайний справа интервалы оставить открытыми.

Р.Б. Кеттелл предложил, например, шкалу стенов – «стандартной десятки». Среднее арифметическое значение в «сырых» баллах принимается за точку отсчета. Вправо и влево отмеряются интервалы, равные 1/2 стандартного отклонения. На Рис. 1.1. представлена схема вычисления стандартных оценок и перевода «сырых» баллов в стены по шкале N 16-факторного личностного опросника Р. Б. Кеттелла.

Справа от среднего значения будут располагаться интервалы, равные 6, 7, 8, 9 и 10 стенам, причем последний из этих интервалов открыт. Слева от среднего значения будут располагаться интервалы, равные 5, 4, 3, 2 и 1 стенам, и крайний интервал также открыт. Теперь мы поднимаемся вверх, к оси «сырых баллов», и размечаем границы интервалов в единицах «сырых» баллов. Поскольку М=10,2; ?=2,4, вправо мы откладываем 1/2?, т.е. 1,2 «сырых» балла. Таким образом, граница интервала составит: (10,2 + 1,2) = 11,4 «сырых» балла. Итак, границы интервала, соответствующего 6 стенам, будут простираться от 10,2 до 11,4 баллов. В сущности, в него попадает только одно «сырое» значение - 11 баллов. Влево от средней мы откладываем 1/2 ? и получаем границу интервала: 10,2-1,2=9. Таким образом, границы интервала, соответствующие 9 стенам, простираются от 9 до 10,2. В этот интервал попадают уже два «сырых» значения - 9 и 10. Если испытуемый получил 9 «сырых» баллов, ему начисляется теперь 5 стенов; если он получил 11 «сырых» баллов - 6 стенов, и т. д.

Мы видим, что в шкале стенов иногда за разное количество «сырых» баллов будет начисляться одинаковое количество стенов. Например, за 16, 17, 18, 19 и 20 баллов будет начисляться 10 стенов, а за 14 и 15 - 9 стенов и т. д.

В принципе, шкалу стенов можно построить по любым данным, измеренным по крайней мере в порядковой шкале, при объеме выборки n>200 и нормальном распределении признака.

Другой способ построения равноинтервальной шкалы - группировка интервалов по принципу равенства накопленных частот. При нормальном распределении признака в окрестности среднего значения группируется большая часть всех наблюдений, поэтому в этой области среднего значения интервалы оказываются меньше, уже, а по мере удаления от центра распределения они увеличиваются, (см. Рис. 1.2.). Следовательно, такая процентильная шкала является равноинтервальной только относительно накопленной частоты (Мельников В.М., Ямпольский Л.Т., 1985, с. 194).

Интервальные измерения широко используются в психологии. Примером могут являться тестовы шкалы, которые специально вводятся при обосновании равноинтервальности (метричности) тестовой шкалы (IQ Векслера, стены, Т-шкала и т.д.)

Шкала равных отношений (метрическая), или абсолютная шакла – это шкала, классифицирующая объекты или субъектов пропорционально степени выраженности измеряемого свойства. В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета. В физике абсолютная нулевая точка отсчета встречается при измерении длин отрезков или физических объектов и при измерении температуры по шкале Кельвина с абсолютным нулем температур. Считается, что в психологии примерами шкал равных отношений являются шкалы порогов абсолютной чувствительности. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной. Абсолютная глупость и абсолютная честность - понятия скорее житейской психологии.

То же относится и к установлению равных отношений: только метафора обыденной речи допускает, чтобы Иванов был в 2 раза (3, 100, 1000) умнее Петрова или наоборот.

Абсолютный нуль, правда, может иметь место при подсчете количества объектов или субъектов. Например, при выборе одной из 3 альтернатив испытуемые не выбрали альтернативу А ни одного раза, альтернативу Б - 14 раз и альтернативу В - 28 раз. В этом случае мы можем утверждать, что альтернативу В выбирают в два раза чаще, чем альтернативу Б. Однако при этом измерено не психологическое свойство человека, а соотношение выборов у 42 человек.

По отношению к показателям частот возможно применять все арифметические операции: сложение, вычитание, деление и умножение. Единица измерения в этой шкале отношений - 1 наблюдение, 1 выбор, 1 реакция и т. п. Мы вернулись к тому, с чего начали: к универсальной шкале измерения в частотах встречаемости того или иного значения признака и к единице измерения, которая представляет собой 1 наблюдение. Расклассифицировав испытуемых по ячейкам номинативной шкалы, мы можем применить потом высшую шкалу измерения - шкалу отношений между частотами.

Другие шкалы

1. Дихотомическая классификация часто рассматривается как вариант шкалы наименований. Это верно, за исключением одного случая, когда мы измеряем свойство, имеющее всего лишь два уровня выраженности: «есть—нет», так называемое «точечное» свойство. Примеров таких свойств много: наличие или отсутствие у испытуемого какой-либо наследственной болезни (дальтонизм, болезнь Дауна, гемофилия и др.), абсолютного слуха и др. В этом случае исследователь имеет право проводить «оцифровку» данных, присваивая каждому из типов цифру «1» или «0», и работать с ними как со значениями шкалы интервалов.

В ряде пособий неверно утверждается, что шкала наименований различает предметы по проявлению свойства, но не различает их по уровню проявления этого свойства. Шкала наименований вообще не основана на понятии «свойство» (которое вводится, лишь начиная со шкалы порядка), а базируется на представлении о «типе» — множестве эквивалентных объектов. Для того чтобы ввести понятие «свойство», требуется ввести отношения не между объектами, а между классами (типами) эквивалентных объектов (которые, конечно, могут содержать всего лишь один объект).

2. Шкала разностей, в отличие от шкалы отношений, не имеет естественного нуля, но имеет естественную масштабную единицу измерения. Ей соответствует аддитивная группа действительных чисел. Классическим примером этой шкалы является историческая хронология. Она сходна со шкалой интервалов. Разница лишь в том, что значения этой шкалы нельзя умножать (делить) на константу. Поэтому считается, что шкала разностей — единственная с точностью до сдвига. Некоторые исследователи полагают, что Иисус Христос родился за четыре года до общепринятого начала нашего христианского летосчисления. Сдвиг на четыре года назад ничего не изменит в хронологии. Можно использовать мусульманское летосчисление или же считать годы от сотворения мира. Кому как нравится.

В психологии шкала разностей используется в методиках парных сравнении.

3. Абсолютная шкала является развитием шкалы отношении и отличается от нее тем, что обладает естественной единицей измерения. В этом ее сходство со шкалой разностей. Число решенных задач («сырой» балл), если задачи эквивалентны, — одно из проявлений абсолютной шкалы.

В психологии абсолютные шкалы не используются. Данные, полученные с помощью абсолютной шкалы, не преобразуются, шкала тождественна сама себе. Любые статистические меры допустимы.

4. В литературе, посвященной проблемам психологических измерений, упоминаются и другие типы шкал: ординальная (порядковая) с естественным началом, логинтервальная, упорядоченная метрическая и др.

Все написанное выше относится к одномерным шкалам. Шкалы могут быть и многомерными: шкалируемый признак в этом случае имеет ненулевые проекции на два (или более) соответствующих параметра. Векторные свойства, в отличие от скалярных, являются многомерными.

Шкальные преобразования

Возможны два варианта шкальных преобразований:

  1. повышение мощности шкалы;
  2. понижение мощности шкалы.

Вторая процедура является тривиальной. Поскольку все возможные процедуры преобразований, которые приемлемы для более мощной шкалы (например, шкалы интервалов), допустимы и для менее мощной (например, шкалы порядка), то у нас есть право рассматривать данные, полученные с помощью интервальной шкалы, как порядковые или, допустим, порядковую шкалу — в качестве номинальной. Другое дело, если (по каким-либо соображениям) у нас возникает потребность перейти от шкалы наименований к шкале порядка и т.д. Для этого требуется вводить необъективные (с позиций математической теории измерений) допущения и эмпирические приемы, базирующиеся лишь на интуиции и правдоподобных рассуждениях. Но в большинстве случаев производится эмпирическая проверка: в какой мере данные, полученные с помощью «слабой» шкалы, удовлетворяют требованиям более «мощной» шкалы.

Рассмотрим переход от шкалы наименований к порядковой шкале. Естественно, для этого нужно упорядочить классы по некоторому основанию. Предположим, что принадлежность объекта к некоторому классу есть случайная функция. Тогда переход от номинативной шкалы к шкале порядка возможен в том случае, если существует упорядоченность классов. Во-первых, для каждого элемента существует модальный класс, вероятность принадлежности к которому значимо больше, чем к другим классам. Во-вторых, для каждого элемента существует только одна функция вероятностной принадлежности к множеству классов, такая, чтобы эти классы можно было упорядочить единственным образом. Проще говоря, каждый класс должен иметь только двух соседей: «слева» и «справа», а порядок соседства определяется эмпирической частотой попадания элементов в различные классы. В «свой» класс элемент попадает чаще, в соседние со «своим» — реже и в отдаленные — еще реже. При обработке данных осуществляется эмпирическая проверка каждой тройки классов на стохастическую транзитность. Преобразование шкалы порядка в шкалу интервалов — более частый вариант. Он подробно описан в литературе, посвященной теории психологических измерений, в частности теории тестов.

Как определить, в какой шкале измерено явление

Определение того, в какой шкале измерено явление (представлен признак), - ключевой момент анализа данных : любой последующий шаг, выбор любого метода зависит именно от этого.

Обычно идентификация номинативной шкалы, её дифференциация от ранговой, а тем более от метрической шкалы не вызывает особых проблем.

Значительно сложнее определить различие между порядковой и метрической шкалами. Проблема связана с тем, что измерения в социальных науках, как правило, косвенные. Непосредственно мы измеряем некоторые наблюдаемые явления или события: количество ответов на вопросы, или заданий, решённых за отведённое время, или время решения набора заданий и т.д. Но при этом выносим суждения о некотором скрытом, латентном свойстве, недоступном прямому наблюдению: об агрессивности, общительности, способности и т.д.

Количество заданий, решённых за отведённое время, - это, конечно, измерение в метрической шкале. Но само по себе это количество нас интересует в той мере, в какой оно отражает некоторую изучаемую нами способность. Соответствуют ли равные разности решённых задач равным разностям выраженности изучаемого свойства (способности)? Если ответ «да» - шкала метрическая (интервальная), если «нет» - шкала порядковая.

Конечно, проще всего в подобных ситуациях согласиться с тем, что признак представлен в порядковой шкале. Но при этом мы существенно ограничиваем себя в выборе методов последующего анализа. Более того, переход к менее мощной шкале обрекает нас на утрату части столь ценной для нас эмпирической информации об индивидуальных различиях испытуемых. Следствием этого может являться падение статистической достоверности результатов исследования. Поэтому исследователь стремится всё ж найти свидетельства того, что используемая шкала – более мощная, метрическая.


Литература:

  1. Исследование в психологии: методы и планирование / Дж. Гудвин. — СПб.: Питер, 2004.
  2. Дружинин В. Н. Экспериментальная психология. — 2-е изд., доп. — СПб.: Питер, 2002.
  3. Куликов Л.В. Психологической исследование: методические рекомендации по проведению. – СПб.:Речь, 2002.
  4. Наследов А.Д. Математические методы психологического исследования. Анализ и интерпретация данных. – СПб.:Речь, 2004.
  5. Сидоренко Е.В. Методы математической обработки в психологии. – СПб.:Речь, 2003.